人工智能两次衰落的根本原因?
经历了两次崛起,两次没落,终于在1993年,迎来了真正意义上的人工智能的崛起。从1993年至今,人工智能的发展一直处于良好的状态,期间也取得了许多的成就。无论是技术、思想还是应用,人工智能都迎来了前所未有的突破,实现了一次完美的崛起。
其实在人工智能的发展史上,这两起两落是必然的,因为当时的社会环境不足以推动人工智能的发展。最终人工智能的崛起也是必然的,因为计算机时代已经到来,互联网的发展也在推动着人工智能的发展,种种机遇摆在眼前,人工智能在今后只会越来越强大
人工智能技术演进可分为两个阶段?
人工智能的发展主要经历了五个阶段:
(1)萌芽阶段,上世纪50年代,以申农为首的科学家共同研究了机器模拟的相关问题,人工智能正式诞生;
(2)第一发展期,上世纪60年代是人工智能的第一个发展黄金阶段,该阶段的人工智能主要以语言翻译、证明等研究为主;
(3)瓶颈阶段,上世纪70年代经过科学家深入的研究,发现机器模仿人类思维是一个十分庞大的系统工程,难以用现有的理论成果构建模型;
(4)第二发展期,已有人工智能研究成果逐步应用于各个领域,人工智能技术在商业领域取得了巨大的成果;
(5)平稳发展阶段,上世纪90年代以来,随着互联网技术的逐渐普及,人工智能已经逐步发展成为分布式主体...
第一阶段主要是研究人的认知与思维过程并将其机械化,使计算机可以模拟人的思考过程,即机械化推理又或形式推理。对于形式推理我国古代,古希腊与公元前一千年就有所研究,并对后世思维过程产生了重大的影响,推动了亚里士多德的三段论与归纳法。十七世纪德国数学家和哲学家莱布尼兹认为一切现实事件都可以通过物理符号将其逻辑化并进行推理,即‘万能符号’理论,这为数理逻辑发展奠定了基础,也是第一阶段人工智能思想的萌芽。但是人们渐渐发现基于模拟人类思维过程的人工智能应用范围很小,只能解决一些简单的问题,一旦超出范围或复杂度高一些机器就无能为力了,这使人工智能迎来第一次沉默期。
第二阶段也就是我们现在所处的阶段,不再强调模拟人的思维过程进行逻辑推理,而是基于统计学原理,利用智能算法在海量数据的基础上寻找规律并实现机器的监督学习。在人工智能迎来第一次发展低谷时,基于专业知识库的专家系统和以分布存储并行处理为核心的人工神经网络为人工智能迎来发展高峰期,但由于机器的计算能力差,成本太高,个人电脑开始走进各个家庭等原因使人工智能的发展再次进入冬眠期。如今,随着摩尔定律的不断印证,计算机计算性能大幅度提升,人工智能飞速发展一路高歌猛进,早已悄无声息地渗透进各行各业。
人工智能第二次浪潮结束的原因是什么?
20世纪80年代,随着专家系统的出现与风靡、神经网络的复兴及日本的第五代计算机计划的实施,人工智能经历了它的第二个黄金时代。
大约十年后,随着日本第五代计算机宣告失败,专家系统也风光不再,人工智能发展史上第二次低谷来临。
人工智能对人类造成冲击实际是哪年?
人工智能是在1956年达特茅斯会议上首先提出的。该会议确定了人工智能的目标是“实现能够像人类一样利用知识去解决问题的机器”。虽然,这个梦想很快被一系列未果的尝试所击碎,但却开启了人工智能漫长而曲折的研究历程。
人工智能的第一次高潮始于上世纪50年代。在算法方面,感知器数学模型被提出用于模拟人的神经元反应过程,并能够使用梯度下降法从训练样本中自动学习,完成分类任务。另外,由于计算机应用的发展,利用计算机实现逻辑推理的一些尝试取得成功。理论与实践效果带来第一次神经网络的浪潮。然而,感知器模型的缺陷之后被发现,即它本质上只能处理线性分类问题,就连最简单的异或题都无法正确分类。许多应用难题并没有随着时间推移而被解决,神经网络的研究也陷入停滞。
人工智能的第二次高潮始于上世纪80年代。BP(Back Propagation)算法被提出,用于多层神经网络的参数计算,以解决非线性分类和学习的问题。另外,针对特定领域的专家系统也在商业上获得成功应用,人工智能迎来了又一轮高潮。然而,人工神经网络的设计一直缺少相应的严格的数学理论支持,之后BP算法更被指出存在梯度消失问题,因此无法对前层进行有效的学习。专家系统也暴露出应用领域狭窄、知识获取困难等问题。人工智能的研究进入第二次低谷。
到此,以上就是小编对于人工智能几个低谷时代的问题就介绍到这了,希望介绍关于人工智能几个低谷时代的4点解答对大家有用。